超分辨显微镜工作原理的详细介绍:对于传统的光学显微镜,💙光的衍射让成像分辨率限制在大约250 nm。如今,超分辨率技术可以将此提高10倍以上。这种技术主要通过三种方法实现:单分子定位显微镜,包括光敏定位显微镜(PALM)和随机光学重建显微镜(STORM);结构照明显微镜(SIM);以及受激发射损耗显微镜(STED)。
如何选择超分辨率技术,这是大家都关心的。“不幸的是,并没有简单的原则来决定使用哪种方法,”英国牛津大学🏅的博士后研究员Mathew Stracy说。“每一种都有其自身的优点和缺点。”
科学家当然也在想办法,为特定的项目选择合适的方法。以色列理工学院的助理教授Yoav Shechtman表示:ꦺ“在生物成像的背景下,要考虑的关键因꧑素包括:空间和时间分辨率、对光损伤的敏感性、标记能力、样本厚度,以及背景荧光或细胞自体荧光。”
工作原理
各种超分辨显微镜是以不同的方式工作的。以PALM和STORM为例,在特定时刻,只有一小部分荧光标记激发或光活化,使得它们能够高精度地独立定位。让所有荧光标记都经历这个过♕程,这也就带来了一幅完整的超分辨率图像。2014年诺贝尔化学奖的获得者之一、马普生物物理化学研究所主任Stefan Hell表示:“PALM/STORM系统相对容易搭建,但比较难以应用,因为荧光基团要具有光活化能力。局限之处在于它们需要检测细胞背景下的单个荧光分子,在可靠性上不及STED。”
STED使用激光脉冲来激发荧光基团,并使用环形的激光来淬灭荧光基团,只留下中间纳米大小的荧光而得到超高分辨率。扫描整个样本,可生成一幅图像。“STED的优势在于它是一种按钮技术,”Hell解释说。“它用起来就像标准的共聚焦荧光显微镜。”它还可以利用一些荧光基团对活细胞进行成像,比如绿色或黄色的荧光蛋白和罗丹明衍生染料。