在材料科学领域中,激光共聚焦显微镜以转盘共聚焦光学系统为基础,结合高稳定性结构设计和3D重建算法,共同组成测量系统。它可以通过使用空间针孔来阻挡散焦光来提高显微图像的光学🐼分辨率和对比度。在图像形成中,捕获样品中不同深度的多个二维图像可重建三维结构(即光学切片过程)。该技术广泛用于科学和工业界,典型的应用是生命科学、半导体检查和材料科学。
作为一种先进的光学显微镜技术,激光共聚焦显微镜可以揭示材料的微观结构和特征,推动着材料科学的发展。
激光共聚焦显微镜相比传统的显微镜技🎀术具有更高的分辨率和深度探测能力,对大坡度的产品有更好的成像效果,在满足精度的情况下使用场景更具有兼容性。激光共聚焦显微镜可以获得高达亚纳米级的空间分辨率(高度分辨率0.5nm;宽度分辨率1nm。),能更好地揭示材料的微观特征和晶体结构,使研究人员更容易深入研究材料的微观结构。
其次,激光共聚焦显微镜非接触式成像测量方式,不需要与样品直接接触,避免了可能对样品造成损伤和污染。这使得不管是金属材料还是纳米材料等各种不同类型的材料,激光共聚焦显微镜都能进行观察和分析,并且都能得到清晰的3🧔d显微成像。
此外,激光共聚焦显微镜具有三维成像和实时观察的优势🌊。它可以构建出样品的三维表面形貌和🃏内部结构,这对于分析材料的三维形态、孔隙结构和颗粒分布等特征十分重要。同时通过实时观察样品的三维成像过程,能更好的研究材料的动态变化和响应。
总的来说激光共聚焦显微镜具有高分辨率、非接触式成像、三维成像和实时观察等优点,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等参数都可以测量。广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配💎件、光学加工、微纳材料制造、汽车零部件𓂃、MEMS器件等超精密加工行业及航空航天、科研院所等领域,对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。